Linux Interface Bonding

P.M.J. de Bruijn

27th February 2005

License

Copyright 2005 by © P.M.J. de Bruijn. This
material may be distributed only subject
to the terms and conditions set forth in
the Open Publication License, v1.0 or later
(the latest version is presently available at
http://www.opencontent.org/openpub/).

Contents
1 Introduction 1
2 Bonding, In Theory 1
3 Bonding, In Practice 2
3.1 Hardware 2
3.1.1 Switches 2
3.1.2 NICs 2
3.2 Software 2
3.2.1 Distribution 2
3.2.2 Driver 2
3.2.3 Configuration 2
3.2.4 Activating 3
4 Production Use 3
4.1 miimon 3
4.1.1 TCP. 3
4.1.2 UDP 3
4.2 Network 3
5 Conclusion 3

1 Introduction

Do you have a really, really important server?
Of course you do. Now wouldn't it be nice if

we were able to protect that server from net-
work failures. Network failures you ask? Well
a lot can go wrong with your network equip-
ment. Switches and hubs can fail. Network
cards can die.

Fortunately the RedHat Enterprise Linux
operating system is capable of mitigating the
effects of these failures. The solution to our
headaches is called bonding.

The Linux bonding driver also has load-
balancing capabilities, but they are beyond
the scope of this article.

2 Bonding, In Theory

The basic concept behind bonding is that two
(or more) become one. You’'ll basically merge
two physical NICs into a single logical NIC.
The physical NICs will be called the slave in-
terfaces. The logical NIC controls all the slave
interfaces and thus is called the master in-
terface.

When the logical interface is brought up,
the bonding driver brings up the first physical
interface in the team. The logical interface
uses it's own MAC address and will respond
to all incoming traffic destined for it.

The master interface polls the active slave
interface on a regular basis, to see whether
network connectivity is still present. If the
bonding driver determines that active slave
interface went down, it quickly assigns the
secondary slave interface the MAC address
previously used by the primary slave inter-
face. The interface is then brought up, and
in turn becomes the active slave interface. It
then begins accepting traffic.

mailto:keizerflipje@home.nl
mailto:keizerflipje@home.nl
http://www.opencontent.org/openpub/

3 Bonding, In Practice

3.1 Hardware
3.1.1 Switches

You can setup a NIC team to operate on a sin-
gle switch, which will only protect you from
NIC or cable failure. For maximum effec-
tiveness you’ll also need three (un)managed
switches. One switches will act as a network
backbone on the core layer. The other two will
be the distribution/access layer switches. Of-
course the backbone switch will still present a
single point of failure into your network, this
can be compensated for, by buying a modu-
lar switch, which can hotswap broken com-
ponents.

3.1.2 NICs

To take proper advantage of bonding you’ll
need a server with at least two NICs, prefer-
ably (but not nessecarily) the same.

I used two Compaq NC3121 NICs, which
are powered by Intel 825528B chips. Fortu-
nately Intel maintains it’s €100 driver well.

Keep in mind that the point of having trans-
parent failover is avoiding user complaints.
When using two different NICs, you risk not
knowing how the secondary NIC will act when
called upon.

3.2 Software
3.2.1 Distribution

For this article I'm using CentOS 3.4, which
in turn is based on RedHat Enterprise Linux
3 Update 4. But the steps provided here
should work on any RedHat like Linux dis-
tribution.

3.2.2 Driver

The first and most important thing to do is
make sure you load the bonding driver at boot
time. For this we need to modify the the
/etc/modules.conf file, and adjust it to look
like this:

modules.conf

alias bond0 bonding

options bond0 mode=active-backup miimon=100
alias ethO e100

alias ethl el100

The alias statements make sure the device
files are associated with the proper drivers.
Make sure you alias the bonding driver be-
fore you alias another NIC driver, this is im-
portant when using an SNMP agent. The op-
tions statement will tell the bonding driver
what mode we will use and at what interval
(in ms) to monitor our NICs link status.

For more information on the mode parame-
ter please review the bonding.txt document
which should be supplied with the kernel
sources of your distribution.

3.2.3 Configuration

After the driver is properly loaded, we can
start configuring our boot scripts.

Each interface is configured through a
corresponding ifcfg-ifname file located in
/etc/sysconfig/network-scripts/. We'll start
by configuring our master interface bondO:

ifcfg-bond0

DEVICE=bond0
BOOTPROTO=static
ONBOOT=yes
BROADCAST=192.168.2.255
IPADDR=192.168.2.13
NETMASK=255.255.255.0

GATEWAY=192.168.2.1
USERCTL=no
TYPE=Ethernet

Next the configuration of our first physical
interface:

ifcfg-ethO

DEVICE=eth0
BOOTPROTO=none
MASTER=bond0
SLAVE=yes
USERCTL=no
TYPE=Ethernet

Our failover physical interface:

ifcfg-ethl
DEVICE=ethl
BOOTPROTO=none
MASTER=bond0

SLAVE=yes

USERCTL=no

TYPE=Ethernet

As you might have noticed the slave inter-
faces have no IP addresses assigned to them,
because they inherit the IP address of their
master interface.

3.2.4 Activating

Everything should now be ready. You can
use the normal ifup command to activate our
newly created NIC team:

#ifup bondO

ip_tables: (C) 2000-2002 Netfilter core team
Enslaving ethO to bondO

Enslaving ethl to bondO

e100: ethO NIC Link is Up 100Mbps Full duplex
e100: ethl NIC Link is Up 100Mbps Full duplex
#

As you can see, both ethO and ethl are en-
slaved to bondO, as they should be.

4 Production Use

4.1 miimon

When using bonding in a production environ-
ment, you should carefully select the miimon
interval. A smaller interval incurs more CPU
load.

4.1.1 TCP

Most TCP based protocols should work per-
fectly using the 100ms miimon interval used
in this article. Connection may stall for a split
second when the server is changing NICs.

4.1.2 UDP

UDP based protocols are a whole different ball
park. It depends heavily on the upper layer
protocol whether loss of connectivity and/or
data will occur. UDP is a connectionless
protocol, without a garantee of safe delivery.
Make sure you carefully test all your mission
critical applications based on UDP.

4.2 Network

When using the multi-tier network approach
presented here, you should also be aware
that it may take the switches some time to
notice the changes in the network that are
occuring.

If your server does failover to it’s second
NIC, the second switch it's connected to will
be briefly confused. The switch has the same
MAC address available on it’'s upstream link.

The same thing goes for the backbone
switch, the MAC address will be seen briefly
on two different downstream ports. Eventu-
ally the old port will age the MAC address out
of it's MAC database, and connectivy will re-
sume. Lucky for us, this all happens within
a couple of ms, and nobody will notice, if all
goes well.

5 Conclusion

Linux interface bonding allows us to pro-
vide reliable network connectivity to any given
Linux server without incurring the cost of an
add-on software product.

	Introduction
	Bonding, In Theory
	Bonding, In Practice
	Hardware
	Switches
	NICs

	Software
	Distribution
	Driver
	Configuration
	Activating

	Production Use
	miimon
	TCP
	UDP

	Network

	Conclusion

